LogoLogo
🎚️ Updates👋🏽 Book a Demo🎫 Get Support🖊️ Sign-up
  • 👋Basics
    • Welcome
    • Get Started
      • Sign-up
        • Single Sign-On (SSO)
      • Create a Team
      • Create a Project
      • Create a Design
      • Grab a 7-day Trial
      • Plans
        • Community Plan
        • Essentials Plan
        • Practice Plan
        • Enterprise Plan
        • Education Plan
        • Suppliers Plan
        • Credits
        • Offers
          • Sculptform Offer
    • Get Support
      • Applications
        • Building
        • Wall
        • Floors and Subfloors
        • Roof
      • Support Tickets
      • On-demand Courses
        • Geometry
        • H1 AS1 & VM1
        • NCC 2022: J1V3
        • Moisture
        • Themes
        • Daylight
        • DTS Façade Calcs
        • Total R-values
        • NCC 2022: J1V5
        • Part J4 Building Fabric
        • 3D Geometry in SketchUp
        • H1 VM2
        • BESS: Daylight Access
        • DQLS: Daylight Modelling
        • HVAC Sizing
        • Dew Point
        • Green Star: Daylight
        • CIBSE TM59
        • G7 Natural Light
        • Advanced Shading
        • IDF Exports and Imports
        • 2D to 3D Specification
      • Project Support
      • Testing and Verification
        • EnergyPlus™ V 9.5.0 + 22.2
          • Input Output Reference
          • Engineering Reference
          • ANSI/ASHRAE Standard 140
        • Radiance V 5.2
        • Total R-value Calculations (AS/NZ 4859.2 + NZS 4214)
        • System Total R-value Calculations (CIBSE Guide A)
      • Updates
      • FAQ's
        • Design & Specification
          • Acoustic
            • Sound Pressure, Frequency and Density
            • Weighted Sound Reduction Index Rw
            • Insulation and Density
            • Acoustic Glazing
          • Climate
            • AU Climate Zones
            • The Koppen Climate Classification System
            • NIWA Weather Files
          • Comfort
          • Complaince
            • Performance-Based Design Briefs
          • Materials
            • Control Layers
            • Material Definitions
            • Material Groups
            • Vapour Resistance
            • Surface Emissivity
            • Concrete in Construction
            • Efflorescence in Masonry
            • Glazing - Types
            • Glazing – Technology and Surface Treatments
            • Glazing - Low-E Coatings
            • Framing - Thermally Broken Frames
            • Emerging Technologies - Wall Products and Systems
            • Emerging Technologies - Glazing Products and Systems
            • Glazing - Safety and Defects
            • Pliable Membranes
            • Insulation - Open Cell
            • Insulation - Closed Cell
            • Façade Systems
            • Rigid Air Barriers
        • Data And Security
        • Plans and Trials
        • Training and Workshops
        • Supplier Products
        • Billing
        • Other
  • 📘User Manual
    • Settings
      • Account Management
        • Upgrade Account
        • Update Payment Details
        • Update Profile
        • Add a Team Member
        • Delete A Team Member
        • Purchase Credits
        • Create a Theme
        • Cancel your Plan
      • Project Management
        • Copy a Project
        • Team Activity
        • Update A Project
        • Invite a Guest to a Project
        • Copy a Design to Another Project
        • Copy a Design
        • Delete a Design
        • Delete a Project
        • Delete a Team Member
        • Delete a Team
    • Wall, Roof and Floor
      • Materials
        • Select a Layout
        • Add a Material
        • Move a Material
        • Delete a Material
        • Change Material Properties
        • Adjust Insulation for Compression
        • Adjust an Air Cavity
        • Add A Thermal Break
        • Adjust Surface Emissivity
        • Add / Edit Framing
      • Module Settings
        • Total Height
        • Contact Resistance
        • Cavity Bridging
    • Building
      • Drawing
        • Import A Drawing Underlay
        • Edit Grid Settings
        • Hide Tags & Check Points
        • Flip Geometry
        • Calibrate A Drawing
        • Controlling Layers
        • Building Rotation
        • Set An Origin
        • Draw A Zone
        • Split A Zone
        • Locate Coordinates
        • Review Zones and Aspects
        • 3D View
        • Set A Zone Height
        • Define A Zones Purpose
        • Edit A Zone
        • Use Tagging
        • Duplicate Drawings
        • Matching Underlays
        • Filter Aspects
        • Filter Zones
      • Building
        • Levels
          • Add a Level
          • Duplicate a Level
          • Edit a Level
          • Add a Roof
          • Add a Daylight Grid
          • Add Shading
          • Specify a Roof
          • Add Roof Glazing
          • Add Custom Eaves
          • Project a Roof
          • Draw a Skylight
          • Specify a Skylight
        • Groups
        • Spaces
          • Create a Space
          • Update a Schedule
          • Update a Building Class
          • Add Occupants
          • Add Equipment Loads
          • Add Lighting Loads
          • Set Infiltration
          • Set Thermostats
          • Add HVAC
          • Set Sizing
        • HVAC
          • Add Plant HVAC
            • Air Handling Unit
              • Supply Air Fan
              • Return Air Fan
              • Outside Air System
              • Heating Coil
              • Cooling Coil
            • Chilled Water Loop
              • Chiller (Air Cooled)
              • Chiller (Water Cooled)
              • Four Pipe Heat Pump (Cooling)
            • Condenser Water Loop
              • Auxiliary Condenser Water Loop
              • Cooling Tower
            • Four Pipe Heat Pump
            • Hot Water Loop
              • Heating Device - Gas Boiler
              • Heating Device – Air Source Heat Pump
              • Heating Device – Four Pipe Heat Pump (Heating)
            • VRF Condenser Unit (Air Cooled)
            • Constant Air Volume System (Air Cooled)
            • Fan Coil Unit System (Air Cooled)
            • Variable Air Volume System (Air Cooled)
            • VRF Condenser Unit
          • Add Space HVAC
            • Air Terminal
              • Heating Coil
            • Fan Coil Unit
              • Cooling Coil
              • Heating Coil
              • Air Loop
            • Packaged Terminal Heat Pump (Split System)
              • Supply Air Fan
              • Heating Coil
              • Cooling Coil
            • VRF Terminal Unit
              • Air Loop
            • Constant Air Volume System (Air Cooled)
            • Fan Coil Unit System
            • Variable Air Volume System (Air Cooled)
            • Variable Refrigerant Flow
          • Select HVAC Templates
            • Fan Coil Unit - Air Cooled (EnergyPlus HVACTemplate)
            • Packaged Variable Air Volume (EnergyPlus HVACTemplate)
            • Packaged Constant Air Volume (EnergyPlus HVACTemplate)
            • Variable Refrigerant Flow (EnergyPlus HVACTemplate)
            • Central Plant and Air Handling System
            • Fan Coil Unit System (Electric Heating)
            • Fan Coil Unit System (Water Heating)
            • Four Pipe Heat Pump System
            • Variable Refrigerant Flow
            • Variable Refrigerant Flow (incl. Outside Air)
            • Water-cooled Package Unit
        • Shading
          • Add Extruded Form
          • Edit Shading
          • Surface Customisation
        • Renewables
          • Add Solar
          • Edit Solar
          • Add Renewable Energy
        • Modelling
          • Simulation
          • Site
          • Zones
          • Reporting
        • Reference Building
          • J1V3
          • V 2.6.2.2
          • H1 / VM1
      • Envelope
        • Walls
        • Roofs
        • Floors
        • Windows
        • Skylights
        • Glazed Doors
        • Opaque Doors
        • Shading
          • Add Local Shading
      • Building FAQ
        • Calculate Discharge Coefficients
        • J1V3 Reference Building - Control Thermostat
        • H1/VM1 - Infiltration and Ventilation
        • Accessing Designer Mode
        • Combining Zones
        • Adding a Skillion Roof or Sloping Ceiling
        • How do I model a Curtain Wall Spandrel?
        • Weather Data Sources
        • Create a Custom Location
    • Workflows
      • Energy Efficiency
        • H1/AS1
        • H1/AS2
        • H1/VM1
        • Part J4 Building fabric
          • J4D3 Thermal construction — general
          • J4D4 Roof and Ceiling Construction
          • J4D5 Roof Lights
          • J4D6 Walls and glazing
            • NCC 2019 Façade Calculator and Speckel
            • Specification 37
          • J4D7 Floors
        • J1V3 Verification using a reference building
        • J1V5 Verification using a reference building for a Class 2 sole-occupancy unit
          • J1P2 Performance Requirements
          • J1P3 Performance Requirements
          • J1V5 HVAC Schedules
          • J1V5 Lighting Schedules
          • J1V5 Occupancy Schedules
          • J1V5 Cooking and Appliance Schedules
          • J1V5 Internal Heat Loads
          • J1V5 Air-conditioning Setpoints
          • J1V5 Natural Ventilation Requirements
        • V2.6.2.2 Verification using a reference building
          • V2.6.2.2 Method
          • Support Materials
        • Total R-values
        • Advanced HVAC
          • Zone Control Thermostat
          • EnergyPlus Sizing Calculations
          • Demand-controlled ventilation
          • Outdoor air reset-based controls
          • Modelling four-pipe heat pumps
          • Modelling a fixed minimum air flow rate on AHUs/VAVs
          • Customise fan performance curves
          • Customise chiller performance curves
          • Design Day Weather Overview
          • Modelling air source heat pumps
          • Green Star: Reference HVAC System Type 3
          • Advanced HVAC: Typical VAV System
          • Design Day Weather Overview
          • Customise chiller performance curves
          • Customise fan performance curves
          • Modelling a fixed minimum air flow rate on AHUs/VAVs
          • Modelling four-pipe heat pumps
          • Outdoor air reset-based controls
          • Demand-controlled ventilation
          • EnergyPlus Sizing Calculations
          • Zone Control Thermostat
          • Modelling air source heat pumps
        • Energy and Thermal FAQ's
          • Thermal Comfort - PMV
          • Thermal Comfort - CBE Model
          • Total R-value
          • Solar Control
          • VRF Modeling in EnergyPlus
          • Thermal Bridging - The Basics
          • Colour
      • Daylight
        • Grid
        • Surfaces
        • Simulation Settings
        • G7/VM1
        • Green Star
        • BESS
          • Daylight Access - Living Areas
          • Daylight Access - Bedrooms
          • Winter Sunlight
        • Daylight FAQ's
          • Metrics
          • Daylight Design - Introduction
          • Daylight Design - Glazing
      • Moisture
        • Scope
          • Objective
        • Model
        • Internal Conditions
        • External Conditions
        • Moisture FAQ's
          • Wind-driven Rain?
          • Hygrothermal Convergence Errors
          • Hygrothermal Weather Data Sources?
          • Hygrothermal Material Data
          • ASHRAE Fundamentals Cavity Ventilation
          • Mould Growth Index
          • NCC 2022 Condensation Management Requirements
          • Vapour Conversions
          • HAMT FAQ
          • Can I Model a Curtain Wall Spandrel with HAMT?
      • Dew Point
        • External Conditions
        • Internal Conditions
        • Layers
      • Carbon
        • Scope and Boundaries
        • Products (A1 - A3)
        • Construction (A4 - A5)
        • In-Use (B4)
        • End-of-Use (C2)
        • Carbon FAQ's
          • Embodied Energy - Introduction
          • System Boundaries (EN 15978)
          • Material Database
          • Upfront Carbon Emissions - Transport to Site (Module A4)
          • BRANZ CO₂NSTRUCT (V2.0)
          • Database (Customised)
          • AusLCI (V1.38) Construction Carbon Emissions Factors V1Untitled
          • Life Cycle Assessment - Resources
      • Design Day
        • Settings
        • Design Day Reports
      • Designer Mode
        • Airflow Networks
          • Airflow Network Setup
          • Model Settings
          • Airflow Network Settings
            • Ventilation
          • Window Settings
          • Airflow Networks Definitions
        • CIBSE TM59
          • CIBSE TM59 Setup
  • ⏺️Recordings
    • Webinars
      • Specification 44
      • 3D Modelling
      • Part J4 Building Fabric
      • H1 Energy Efficiency: Design out Overheating with the Modelling Method
      • J1V5: The New Multi-Residential Compliance Pathway
      • NCC Shading Algorithms: Updates and Improvements
      • TM59: Design Methodology for Overheating Risk in Homes
      • Airflow Networks: J1V5, TM59 and Natural Ventilation
      • Moisture Management Updates
      • H1 Energy Efficiency Verification Methods
      • Designer Mode: Go Beyond Compliance
      • Community Plan Upgrade
      • Major Feature Release: Verification Method V2.6.2.2
      • H1 Compliance in 45 minutes: Buildings greater than 300 m2
      • H1 Compliance in 45 minutes: Housing and buildings up to 300 m2
      • Advanced HVAC Feature Overview
      • Designing for Embodied Carbon: Building for Climate Change
      • Designing for Natural Light: G7VM1 DQLS and HC5 Natural Light
      • Speckel 2.0 Release: From Compliance to Green Star
      • J1V5: A solution for flexible design or a race to the bottom?
      • NCC 2022: What's Coming This May
      • Advanced HVAC: Testing and Case Studies
      • Daylight Modelling: Planning to Rating Tools
      • Energy Plus 22.2.0: Testing and Verification
      • Life Cycle (Carbon) Assessments: Testing and Case Studies
      • H1 Energy Efficiency: From Schedule to Verification
      • H1 Energy Efficiency: Multi-unit Dwellings
    • Tutorials
      • New Spaces Release
      • Storey Height Update
      • 2D Selection Tool
      • Support Tickets
      • OpenStudio SketchUp Plug-in
      • Pollination Rhino Plug-in
      • Add Clerestory Glazing to Your roof
      • Colour Scheme Hack
      • Daylight Results - An Overview
      • G7 Natural Light Verification Method G7/VM1
      • H1: Admin and Reporting
      • NCC 2022: Shading Multipliers
      • Materials: Create Your Own
      • Daylight / Natural Light Upgrade: G7, BESS & Green Star
      • BESS Daylight Access
      • G7 Grids: A Practical Example
      • Glazing: Multiple Windows Per Aspect
      • Wall Assessments: Thermal, Carbon
      • Roof Systems: Cold, Warm and Hybrid
      • Ceiling Heights: A Practical Example
      • Default Fabric: Setting Common Glazing
      • Drawing Zones: Locking Against X and Y Axis
      • Tagging (Advanced): Create, Administer and Apply
      • Exports: Copy Tables, Images and Data
      • H1 Energy Efficiency - Multi-unit Dwellings
      • Tempered Zoning: Shifting the Thermal Line
      • Air Boundary: A Practical Example
      • External Doors: Residential + Commercial
  • 🤲Other
    • Platform Agreement
Powered by GitBook
On this page

Was this helpful?

  1. Basics
  2. Get Support
  3. FAQ's
  4. Design & Specification
  5. Materials

Glazing - Safety and Defects

PreviousEmerging Technologies - Glazing Products and SystemsNextPliable Membranes

Last updated 2 years ago

Was this helpful?

Fire

Protection against fire is an increasingly important consideration when designing building envelopes. Two separate concepts should be highlighted: reaction to fire and fire resistance.

Reaction to fire measures the behaviour of a given material when exposed to fire and its contribution to fire propagation. For example, a distinction is drawn between non- combustible materials (which do not release any noticeable quantity of heat), combustible materials (which tend to emit heat depending on the level of heat to which they are exposed)and inflammable materials (materials liable to release gas, the nature and quantity of which are likely to generate gaseous phase combustion, i.e. to produce flames). Each product can be placed in a fire-reaction class.

The fire resistance of glazing is the time in minutes during which that element meets the criteria of loadbearing capacity and/or integrity and/or insulation. Fire resistance concerns the glazing and frame rather than a part thereof.

Safety and Security

Safety is a far-reaching concept covering many areas, protecting individuals from the risk of injury due to sharp, broken glazing and falling (defenestration). In trying to avoid the risk of injury only, it is the breakage pattern of the glazing which is significant: it is important to ensure that if the glazing breaks, it does not produce pieces which are likely to cause injury.

To protect against falling, care must be taken to ensure that the glazing is not obliterated, protecting goods and providing protection from burglary and vandalism. In this context, the glazing should remain in place and prevent anyone or anything from penetrating it. It can also be designed for protection against firearms and explosions.

Very few glazing products meet the break pattern, defenestration and resistance criteria described above. These are toughened and laminated glazing products. Other glazing products, including annealed and heat-strengthened, are not safety glazing.

optical-distortion.jpg

Optical defects are relatively rare within glazing products and are typically controlled in manufacture. However, when occurring, they can be highly conspicuous with even minimal deviations from a perfectly flat surface distorting reflected images and views. While undesirable, the physical properties of glazing make this unavoidable and, therefore, can be argued to be not strictly defects but part of the limitations of using glazing.

Bowing and Dishing

The effect of bowing of dishing is frequently observed in conjunction with using double-glazed units. As individual panes of double-glazed units are hermetically sealed, a pressure difference between the surrounding air and the gas in the cavity between panes leads to volume changes. This results in convex or concave deformations of the glazing panes with the extent of change determined by atmospheric pressure, temperature fluctuations and the difference in pressure between the manufacturing facility and the place of installation.

Anisotropy and Double Refraction

Glazing is isotropic, meaning it has the same optical properties when measured in different directions. However, the jets of air used in the thermal toughening process can cool the surface unevenly, leading to glazing with anisotropic optical qualities. Incident light on the surface at an angle other than 90 °, or polarised light, is split into two waves resulting in the effect known as double refraction. Under certain lighting conditions, this phenomenon usually maintains itself as a stripy pattern, with the stripes are caused by the arrangement of air jets.

Interference Phenomena

While rare, interference phenomena occur when there are several perfectly parallel panes of float glazing, such as in a double-glazed unit and under certain light conditions. It manifests itself as stripy zones that are split into the colours of the light spectrum, the position of which change as the individual panes change. While described as an optical defect, as its occurrence requires perfectly parallel glazing panes, it also indicates quality.

Coatings

Coatings, such as low-E coatings, are used to control the optical properties of glazing. They can, however, lead to undesirable coloured reflections dependent on the lighting conditions and angle viewed by the observer.

Roller waves and Lens Effect

A wavy surface is a phenomenon that is particularly prevalent with toughened glazing. As the hot glazing rests during the toughening process on the rollers, deviations can occur, which manifest themselves in a distortion of the reflected image.

Where panes of glazing are further processed to form laminated safety glazing, the so-called lens effect can occur. Caused by the unevenness of the glazing, this optical effect can lead to the convex or concave distortion of the view through the glazing.

👋