LogoLogo
🎚️ Updates👋🏽 Book a Demo🎫 Get Support🖊️ Sign-up
  • 👋Basics
    • Welcome
    • Get Started
      • Sign-up
        • Single Sign-On (SSO)
      • Create a Team
      • Create a Project
      • Create a Design
      • Grab a 7-day Trial
      • Plans
        • Community Plan
        • Essentials Plan
        • Practice Plan
        • Enterprise Plan
        • Education Plan
        • Suppliers Plan
        • Credits
        • Offers
          • Sculptform Offer
          • PHINZ Offer
        • Plans 2025 - Starting 1 July 2025
    • Get Support
      • Applications
        • Building
        • Wall
        • Floors and Subfloors
        • Roof
      • Support Tickets
      • On-demand Courses
        • Geometry
        • H1 AS1 & VM1
        • NCC 2022: J1V3
        • Moisture
        • Themes
        • Daylight
        • DTS Façade Calcs
        • Total R-values
        • NCC 2022: J1V5
        • Part J4 Building Fabric
        • 3D Geometry in SketchUp
        • H1 VM2
        • BESS: Daylight Access
        • DQLS: Daylight Modelling
        • HVAC Sizing
        • Dew Point
        • Green Star: Daylight
        • CIBSE TM59
        • G7 Natural Light
        • Advanced Shading
        • IDF Exports and Imports
        • 2D to 3D Specification
      • Project Support
      • Testing and Verification
        • EnergyPlus™ V 9.5.0 + 22.2
          • Input Output Reference
          • Engineering Reference
          • ANSI/ASHRAE Standard 140
        • Radiance V 5.2
        • Total R-value Calculations (AS/NZ 4859.2 + NZS 4214)
        • System Total R-value Calculations (CIBSE Guide A)
      • Updates
      • FAQ's
        • Design & Specification
          • Acoustic
            • Sound Pressure, Frequency and Density
            • Weighted Sound Reduction Index Rw
            • Insulation and Density
            • Acoustic Glazing
          • Climate
            • AU Climate Zones
            • The Koppen Climate Classification System
            • NIWA Weather Files
          • Comfort
          • Complaince
            • Performance-Based Design Briefs
          • Materials
            • Control Layers
            • Material Definitions
            • Material Groups
            • Vapour Resistance
            • Surface Emissivity
            • Concrete in Construction
            • Efflorescence in Masonry
            • Glazing - Types
            • Glazing – Technology and Surface Treatments
            • Glazing - Low-E Coatings
            • Framing - Thermally Broken Frames
            • Emerging Technologies - Wall Products and Systems
            • Emerging Technologies - Glazing Products and Systems
            • Glazing - Safety and Defects
            • Pliable Membranes
            • Insulation - Open Cell
            • Insulation - Closed Cell
            • Façade Systems
            • Rigid Air Barriers
        • Data And Security
        • Plans and Trials
        • Training and Workshops
        • Supplier Products
        • Billing
        • Other
  • 📘User Manual
    • Settings
      • Account Management
        • Upgrade Account
        • Update Payment Details
        • Update Profile
        • Add a Team Member
        • Delete A Team Member
        • Purchase Credits
        • Create a Theme
        • Cancel your Plan
      • Project Management
        • Copy a Project
        • Team Activity
        • Update A Project
        • Invite a Guest to a Project
        • Copy a Design to Another Project
        • Copy a Design
        • Delete a Design
        • Delete a Project
        • Delete a Team Member
        • Delete a Team
    • Wall, Roof and Floor
      • Materials
        • Select a Layout
        • Add a Material
        • Move a Material
        • Delete a Material
        • Change Material Properties
        • Adjust Insulation for Compression
        • Adjust an Air Cavity
        • Add A Thermal Break
        • Adjust Surface Emissivity
        • Add / Edit Framing
      • Module Settings
        • Total Height
        • Contact Resistance
        • Cavity Bridging
    • Building
      • Drawing
        • Import A Drawing Underlay
        • Edit Grid Settings
        • Hide Tags & Check Points
        • Flip Geometry
        • Calibrate A Drawing
        • Controlling Layers
        • Building Rotation
        • Set An Origin
        • Draw A Zone
        • Split A Zone
        • Locate Coordinates
        • Review Zones and Aspects
        • 3D View
        • Set A Zone Height
        • Define A Zones Purpose
        • Edit A Zone
        • Use Tagging
        • Duplicate Drawings
        • Matching Underlays
        • Filter Aspects
        • Filter Zones
      • Building
        • Levels
          • Add a Level
          • Duplicate a Level
          • Edit a Level
          • Add a Roof
          • Add a Daylight Grid
          • Add Shading
          • Specify a Roof
          • Add Roof Glazing
          • Add Custom Eaves
          • Project a Roof
          • Draw a Skylight
          • Specify a Skylight
        • Groups
        • Spaces
          • Create a Space
          • Update a Schedule
          • Update a Building Class
          • Add Occupants
          • Add Equipment Loads
          • Add Lighting Loads
          • Set Infiltration
          • Set Thermostats
          • Add HVAC
          • Set Sizing
        • HVAC
          • Add Plant HVAC
            • Air Handling Unit
              • Supply Air Fan
              • Return Air Fan
              • Outside Air System
              • Heating Coil
              • Cooling Coil
            • Chilled Water Loop
              • Chiller (Air Cooled)
              • Chiller (Water Cooled)
              • Four Pipe Heat Pump (Cooling)
            • Condenser Water Loop
              • Auxiliary Condenser Water Loop
              • Cooling Tower
            • Four Pipe Heat Pump
            • Hot Water Loop
              • Heating Device - Gas Boiler
              • Heating Device – Air Source Heat Pump
              • Heating Device – Four Pipe Heat Pump (Heating)
            • VRF Condenser Unit (Air Cooled)
            • Constant Air Volume System (Air Cooled)
            • Fan Coil Unit System (Air Cooled)
            • Variable Air Volume System (Air Cooled)
            • VRF Condenser Unit
          • Add Space HVAC
            • Air Terminal
              • Heating Coil
            • Fan Coil Unit
              • Cooling Coil
              • Heating Coil
              • Air Loop
            • Packaged Terminal Heat Pump (Split System)
              • Supply Air Fan
              • Heating Coil
              • Cooling Coil
            • VRF Terminal Unit
              • Air Loop
            • Constant Air Volume System (Air Cooled)
            • Fan Coil Unit System
            • Variable Air Volume System (Air Cooled)
            • Variable Refrigerant Flow
          • Select HVAC Templates
            • Fan Coil Unit - Air Cooled (EnergyPlus HVACTemplate)
            • Packaged Variable Air Volume (EnergyPlus HVACTemplate)
            • Packaged Constant Air Volume (EnergyPlus HVACTemplate)
            • Variable Refrigerant Flow (EnergyPlus HVACTemplate)
            • Central Plant and Air Handling System
            • Fan Coil Unit System (Electric Heating)
            • Fan Coil Unit System (Water Heating)
            • Four Pipe Heat Pump System
            • Variable Refrigerant Flow
            • Variable Refrigerant Flow (incl. Outside Air)
            • Water-cooled Package Unit
        • Shading
          • Add Extruded Form
          • Edit Shading
          • Surface Customisation
        • Renewables
          • Add Solar
          • Edit Solar
          • Add Renewable Energy
        • Modelling
          • Simulation
          • Site
          • Zones
          • Reporting
        • Reference Building
          • J1V3
          • V 2.6.2.2
          • H1 / VM1
      • Envelope
        • Walls
        • Roofs
        • Floors
        • Windows
        • Skylights
        • Glazed Doors
        • Opaque Doors
        • Shading
          • Add Local Shading
      • Building FAQ
        • Calculate Discharge Coefficients
        • J1V3 Reference Building - Control Thermostat
        • H1/VM1 - Infiltration and Ventilation
        • Accessing Designer Mode
        • Combining Zones
        • Adding a Skillion Roof or Sloping Ceiling
        • How do I model a Curtain Wall Spandrel?
        • Weather Data Sources
        • Create a Custom Location
    • Workflows
      • Energy Efficiency
        • H1/AS1
        • H1/AS2
        • H1/VM1
        • Part J4 Building fabric
          • J4D3 Thermal construction — general
          • J4D4 Roof and Ceiling Construction
          • J4D5 Roof Lights
          • J4D6 Walls and glazing
            • NCC 2019 Façade Calculator and Speckel
            • Specification 37
          • J4D7 Floors
        • J1V3 Verification using a reference building
        • J1V5 Verification using a reference building for a Class 2 sole-occupancy unit
          • J1P2 Performance Requirements
          • J1P3 Performance Requirements
          • J1V5 HVAC Schedules
          • J1V5 Lighting Schedules
          • J1V5 Occupancy Schedules
          • J1V5 Cooking and Appliance Schedules
          • J1V5 Internal Heat Loads
          • J1V5 Air-conditioning Setpoints
          • J1V5 Natural Ventilation Requirements
        • V2.6.2.2 Verification using a reference building
          • V2.6.2.2 Method
          • Support Materials
        • Total R-values
        • Advanced HVAC
          • Zone Control Thermostat
          • EnergyPlus Sizing Calculations
          • Demand-controlled ventilation
          • Outdoor air reset-based controls
          • Modelling four-pipe heat pumps
          • Modelling a fixed minimum air flow rate on AHUs/VAVs
          • Customise fan performance curves
          • Customise chiller performance curves
          • Design Day Weather Overview
          • Modelling air source heat pumps
          • Green Star: Reference HVAC System Type 3
          • Advanced HVAC: Typical VAV System
          • Design Day Weather Overview
          • Customise chiller performance curves
          • Customise fan performance curves
          • Modelling a fixed minimum air flow rate on AHUs/VAVs
          • Modelling four-pipe heat pumps
          • Outdoor air reset-based controls
          • Demand-controlled ventilation
          • EnergyPlus Sizing Calculations
          • Zone Control Thermostat
          • Modelling air source heat pumps
        • Energy and Thermal FAQ's
          • Thermal Comfort - PMV
          • Thermal Comfort - CBE Model
          • Total R-value
          • Solar Control
          • VRF Modeling in EnergyPlus
          • Thermal Bridging - The Basics
          • Colour
      • Daylight
        • Grid
        • Surfaces
        • Simulation Settings
        • G7/VM1
        • Green Star
        • BESS
          • Daylight Access - Living Areas
          • Daylight Access - Bedrooms
          • Winter Sunlight
        • Daylight FAQ's
          • Metrics
          • Daylight Design - Introduction
          • Daylight Design - Glazing
      • Moisture
        • Scope
          • Objective
        • Model
        • Internal Conditions
        • External Conditions
        • Moisture FAQ's
          • Wind-driven Rain?
          • Hygrothermal Convergence Errors
          • Hygrothermal Weather Data Sources?
          • Hygrothermal Material Data
          • ASHRAE Fundamentals Cavity Ventilation
          • Mould Growth Index
          • NCC 2022 Condensation Management Requirements
          • Vapour Conversions
          • HAMT FAQ
          • Can I Model a Curtain Wall Spandrel with HAMT?
      • Dew Point
        • External Conditions
        • Internal Conditions
        • Layers
      • Carbon
        • Scope and Boundaries
        • Products (A1 - A3)
        • Construction (A4 - A5)
        • In-Use (B4)
        • End-of-Use (C2)
        • Carbon FAQ's
          • Embodied Energy - Introduction
          • System Boundaries (EN 15978)
          • Material Database
          • Upfront Carbon Emissions - Transport to Site (Module A4)
          • BRANZ CO₂NSTRUCT (V2.0)
          • Database (Customised)
          • AusLCI (V1.38) Construction Carbon Emissions Factors V1Untitled
          • Life Cycle Assessment - Resources
      • Design Day
        • Settings
        • Design Day Reports
      • Designer Mode
        • Airflow Networks
          • Airflow Network Setup
          • Model Settings
          • Airflow Network Settings
            • Ventilation
          • Window Settings
          • Airflow Networks Definitions
        • CIBSE TM59
          • CIBSE TM59 Setup
  • ⏺️Recordings
    • Webinars
      • Specification 44
      • 3D Modelling
      • Part J4 Building Fabric
      • H1 Energy Efficiency: Design out Overheating with the Modelling Method
      • J1V5: The New Multi-Residential Compliance Pathway
      • NCC Shading Algorithms: Updates and Improvements
      • TM59: Design Methodology for Overheating Risk in Homes
      • Airflow Networks: J1V5, TM59 and Natural Ventilation
      • Moisture Management Updates
      • H1 Energy Efficiency Verification Methods
      • Designer Mode: Go Beyond Compliance
      • Community Plan Upgrade
      • Major Feature Release: Verification Method V2.6.2.2
      • H1 Compliance in 45 minutes: Buildings greater than 300 m2
      • H1 Compliance in 45 minutes: Housing and buildings up to 300 m2
      • Advanced HVAC Feature Overview
      • Designing for Embodied Carbon: Building for Climate Change
      • Designing for Natural Light: G7VM1 DQLS and HC5 Natural Light
      • Speckel 2.0 Release: From Compliance to Green Star
      • J1V5: A solution for flexible design or a race to the bottom?
      • NCC 2022: What's Coming This May
      • Advanced HVAC: Testing and Case Studies
      • Daylight Modelling: Planning to Rating Tools
      • Energy Plus 22.2.0: Testing and Verification
      • Life Cycle (Carbon) Assessments: Testing and Case Studies
      • H1 Energy Efficiency: From Schedule to Verification
      • H1 Energy Efficiency: Multi-unit Dwellings
    • Tutorials
      • Export Geometry from SketchUp/DesignPH into Speckel
      • New Spaces Release
      • Storey Height Update
      • 2D Selection Tool
      • Support Tickets
      • OpenStudio SketchUp Plug-in
      • Pollination Rhino Plug-in
      • Add Clerestory Glazing to Your roof
      • Colour Scheme Hack
      • Daylight Results - An Overview
      • G7 Natural Light Verification Method G7/VM1
      • H1: Admin and Reporting
      • NCC 2022: Shading Multipliers
      • Materials: Create Your Own
      • Daylight / Natural Light Upgrade: G7, BESS & Green Star
      • BESS Daylight Access
      • G7 Grids: A Practical Example
      • Glazing: Multiple Windows Per Aspect
      • Wall Assessments: Thermal, Carbon
      • Roof Systems: Cold, Warm and Hybrid
      • Ceiling Heights: A Practical Example
      • Default Fabric: Setting Common Glazing
      • Drawing Zones: Locking Against X and Y Axis
      • Tagging (Advanced): Create, Administer and Apply
      • Exports: Copy Tables, Images and Data
      • H1 Energy Efficiency - Multi-unit Dwellings
      • Tempered Zoning: Shifting the Thermal Line
      • Air Boundary: A Practical Example
      • External Doors: Residential + Commercial
  • 🤲Other
    • Platform Agreement
Powered by GitBook
On this page

Was this helpful?

  1. Basics
  2. Get Support
  3. FAQ's
  4. Design & Specification
  5. Materials

Control Layers

PreviousMaterialsNextMaterial Definitions

Last updated 2 years ago

Was this helpful?

While thermal performance is an understandable front-runner in consideration of higher-performance building envelopes, control layers of other types are also to be considered.

A control layer is one of several layers that separates the inside environment from the outside environment, including everything from the exterior render finish on the outside of the wall cladding to the finished paint surface on the inside.

Controllayers.png

There are four main control layers in a building envelope:

Water Control Layers

The external water control layer is the most important, aiming to control the passage of liquid water. More formally, it is the continuous layer comprised of several materials designed, installed or acting to form the rainwater boundary.

In face-sealed barrier systems, this is the exterior-most face of the building envelope. It is a plane concealed behind the exterior face in concealed barrier systems. In drained systems, the water control layer is the drainage plane behind the drainage gap or drainage layer.

Air Control Layers

Air control layers reduce the risk of unwanted moisture leaking or diffusing into the building envelope. Potential failures occur due to air leakage from the building interior, carrying moisture into the walls and roof structures, where it can condense and cause long-term damage that can affect the durability of a system. A wall or roof systems are closed with no way of accessing them, damage from air leakage is concealed. It only becomes evident on internal or external surfaces in the form of mould.

Vapour Control Layers

Vapour control layers control how moisture transfers directly through materials not managed by the air control layer. A sheet of plasterboard board is a good air control layer. Still, as moisture can pass through it, it is important to ensure the vapour control layer resistance is appropriate for the building envelope system. The air and vapour control layers are often the same physical layer, but they do not need to be.

A good vapour control layer should manage moisture levels in the assembly to prevent condensation and allow increased drying potential. Buildings in colder climates face condensation risk mainly because of the need for higher insulation levels. Generally, an increase in the level of insulation in building assemblies translates to less drying potential due to the reduction in energy going through the assemblies. With many modern materials not allowing as much vapour flow as traditional materials, the risk of condensation in well-insulated assemblies has increased. We must consider adding drying potential to our building envelopes as we add thermal insulation.

Thermal Control Layers

Thermal control layers are the least important for building durability. Still, they receive considerable attention due to the obvious focus as an energy-saving initiative and a desire for increased thermal comfort.

In general, air and vapour control layers in heating climates are to be inside the thermal control layer. This prevents moist interior air from contacting cold surfaces due to being outside or between the thermal control layer and condensing.

👋